A feature-selection algorithm based on Support Vector Machine-Multiclass for hyperspectral visible spectral analysis
نویسندگان
چکیده
Quality and safety of foods is one of the world’s top topics. Using high-precision spectral devices is a main technology trends by its high accuracy and nondestructive of food inspection, but the common obstacle is how to extract informative variables from raw data without losing significant information. This article proposes a novel feature selection algorithm named Support Vector Machine-Multiclass Forward Feature Selection (SVM-MFFS). SVM-MFFS adopts the wrapper and forward feature selection strategy, explores the stability of spectral variables, and uses classical SVM as classification and regression model to select the most relevant wavelengths from hundreds of spectral data. We compare SVM-MFFS with Successive Projection Analysis and Uninformative Variable Elimination in the experiment of identifying different brands of sesame oil. The results show that SVM-MFFS outperforms in accuracy, Receiver Operating Characteristic curve, Prediction and Cumulative Stability, and it will provide a reliable and rapid method in food quality inspection. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملModeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification
Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013